Q.P.	Code:	20EE0253
------	-------	----------

Reg. No:

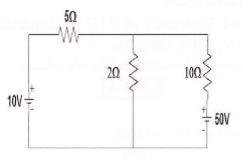
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech I Year I Semester Supplementary Examinations November-2022 PRINCIPLES OF ELECTRICAL CIRCUITS

(Electronics and Communication Engineering)

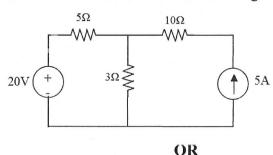
Time: 3 hours

Max. Marks: 60

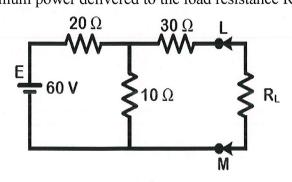

(Answer all Five Units $5 \times 12 = 60$ Marks)

UNIT-I

- 1 a Define active and passive elements with suitable examples.L26M
 - b State and prove Kirchhoff's voltage law and current law with suitable examples. L3 6M


OR

2 a Write the Mesh Current equations in the circuit shown in figure below, and L3 6M determine the currents.



1	Explain in detail about delta to star	transformation of a resistive network.	L3	6M
		UNIT-II		

3 a State & explain Thevenin's theoremL14Mb By using superposition theorem find the current flowing through the 3Ω resistor.L38M

4 a State and explain Reciprocity theorem with suitable example.L36Mb Determine the maximum power delivered to the load resistance R_L.L36M

Page 1 of 2

Q.P. Code: 20EE0253

UNIT-III

5	a	Derive the Transient Response of series RC-circuit with D.C excitation.	L2	6M		
	b	A Series RL circuit with R=50 Ω and L=10H has constant voltage V=100volts	L4	6M		
		applied at t=0 by the closing the switch find the complete current.				
		OR				
6	a	Derive the Laplace Transform of Series RL Circuit.	L2	6M		
	b	A series RC circuit consists of a resistor of 10Ω and capacitor of 0.1 F with a	L4	6M		
		constant voltage of 20v, is applied to the circuit at t=0.0btain the current equation.	pplied to the circuit at t=0.Obtain the current equation.			
		Determine the voltage across the resistor and the capacitor.				
		UNIT-IV				
7	a	Derive an expression for RMS values of sine wave form.	L2	6M		
	b	An alternating current is expressed as $I = 14.14 \text{ sin } 314t$. Determine	L2	6M		
		(i) Maximum current (ii) RMS current (iii) Frequency				
		(iv)Instantaneous current when $t = 0.02$ msec				
		OR				
8	a	Define power factor and apparent power.	L4	6M		
	b	A coil of resistance 10Ω and inductance of 0.1H is connected in series with a	L4	6M		
		150µF capacitor across a 200V, 50Hz. Calculate				
		(i) inductive reactance (ii) capacitive reactance (iii) impedance				
		UNIT-V				
9	a	Explain about ABCD-parameters.	L2	6M		
	b	Draw the characteristics curve for LPF and HPF.	L2	6M		
	OR					
10	a	Explain about h-parameters in terms of y-parameters.	L2	6M		
	b	Explain about Constant-K band -pass filter in detail.	L2	6M		

*** END ***